MiR-556-5p modulates migration, invasion, and epithelial-mesenchymal transition in breast cancer cells via targeting PTHrP

AbstractBreast cancer bone metastases may block normal bone remodeling and promote bone degradation, during which several signaling pathways and small non-coding miRNAs might all play a role. miRNAs and target mRNAs that might be associated with breast cancer bone metastasis were analyzed and selected using bioinformatics analyses based on online data. The 3 ′ untranslated region of key factors associated with breast cancer metastasis were examined for candidate miRNA binding site using Targetscan. The predicted binding was validated. The specific effects of single miRNA and dynamic effects of the miRNA-mRNA axis on breast cancer cell metastasis were investigated. miR-556-5p was downregulated in breast cancer samples according to online datasets and experimental analyses. In breast cancer cells, miR-556-5p overexpression inhibited, whereas miR-556-5p inhibition promoted cancer cell invasion and migration. Among key factors associated with breast cancer bone metastasis, parathyroid hormone related protein (PTHrP) 3′UTR possessed miR-556-5p binding site. Through direct binding, miR-556-5p negatively regulated PTHrP expression. In breast cancer cell lines, miR-556-5p inhibition promoted, whereas PTHrP silencing suppressed cancer cell migrat ion, invasion, and epithelial-mesenchymal transition; the effects of miR-556-5p inhibition were partially reversed by PTHrP silencing. In summary, miR-556-5p targets PTHrP to modulate the cell migration and invasion of breast cancer.
Source: Journal of Molecular Histology - Category: Laboratory Medicine Source Type: research