3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks

Int J Biol Macromol. 2021 Oct 16:S0141-8130(21)02230-3. doi: 10.1016/j.ijbiomac.2021.10.078. Online ahead of print.ABSTRACTPlant-based hydrogels have attracted great attention in biomedical fields since they are biocompatible and based on natural, sustainable, cost-effective, and widely accessible sources. Here, we introduced new viscoelastic bio-inks composed of quince seed mucilage and cellulose nanofibrils (QSM/CNF) easily extruded into 3D lattice structures through direct ink writing in ambient conditions. The QSM/CNF inks enabled precise control on printing fidelity where CNF endowed objects with shape stability after freeze-drying and with suitable porosity, water uptake capacity, and mechanical strength. The compressive and elastic moduli of samples produced at the highest CNF content were both increased by ~100% (from 5.1 ± 0.2 kPa and 32 ± 1 kPa to 10.7 ± 0.5 and 64 ± 2 kPa, respectively). These values ideally matched those reported for soft tissues; accordingly, the cell compatibility of the printed samples was evaluated against HepG2 cells (human liver cancer). The results confirmed the 3D hydrogels as being non-cytotoxic and suitable to support attachment, survival, and proliferation of the cells. All in all, the newly developed inks allowed sustainable 3D bio-hydrogels fitting the requirements as scaffolds for soft tissue engineering.PMID:34666132 | DOI:10.1016/j.ijbiomac.2021.10.078
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research