Assessment of Bone Mineral Density From a Computed Tomography Topogram of Photon-Counting Detector Computed Tomography—Effect of Phantom Size and Tube Voltage

Purpose The aim of this study was to assess the accuracy and impact of different sizes and tube voltages on bone mineral density (BMD) assessment using a computed tomography (CT) topogram acquired with photon-counting detector CT in an osteopenic ex vivo animal spine. Materials and Methods The lumbar back of a piglet was used to simulate osteopenia of the lumbar spine. Five fat layers (each with a thickness of 3 cm) were consecutively placed on top of the excised spine to emulate a total of 5 different sizes. Each size was repeatedly imaged on (A) a conventional dual-energy x-ray absorptiometry scanner as the reference standard, (B) a prototype photon-counting detector CT system at 120 kVp with energy thresholds at 20 and 70 keV, and (C) the same prototype system at 140 kVp with thresholds at 20 and 75 keV. Material-specific data were reconstructed from spectral topograms for B and C. Bone mineral density was measured for 3 lumbar vertebrae (L2–L4). A linear mixed-effects model was used to estimate the impact of vertebra, imaging setup, size, and their interaction term on BMD. Results The BMD of the lumbar spine corresponded to a T score in humans between −4.2 and −4.8, which is seen in osteoporosis. Averaged across the 3 vertebrae and 5 sizes, mean BMD was 0.56 ± 0.03, 0.55 ± 0.02, and 0.55 ± 0.02 g/cm2 for setup A, B, and C, respectively. There was no significant influence of imaging setup (P = 0.7), simulated size (P = 0.67), and their interactio...
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research