Neuroprotective Effects of Chemerin on a Mouse Stroke Model: Behavioral and Molecular Dimensions

Neurochem Res. 2021 Aug 24. doi: 10.1007/s11064-021-03432-9. Online ahead of print.ABSTRACTThe present study was conducted to investigate the effects of different doses of recombinant human Chemerin (rhChemerin) on brain damage, spatial memory, blood-brain barrier (BBB) disruption and cellular and molecular mechanisms in a mouse stroke model. The mouse stroke model was developed by blocking the middle cerebral artery for 1 h and performing reperfusion for 23 h. Immediately, one and three hours after the stroke, 200, 400 and 800 ng/mouse of intranasal rhChemerin was administered. Neuronal and BBB damage, spatial memory and neurological performance were examined 24 h after the stroke. Western blotting and immunofluorescence were utilized to determine the effects of rhChemerin on the expressions of nuclear factor kappa B (NF-κB), pro-inflammatory cytokines such as TNF-α and IL-1β, anti-inflammatory cytokines such as IL-10 and TGF-β and vascular endothelial growth factor (VEGF). Administering 400 and 800 ng/mouse of rhChemerin in the mice immediately and one hour after ischemia minimized the infarct size, BBB opening, spatial memory and neurological impairment (P < 0.001). Furthermore, 800 ng/mouse of rhChemerin significantly diminished terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive (apoptotic) cells, suppressed the expressions of NF-kB, TNF-α and IL-1β and upregulated IL-10 and VEGF in the cortex and hippocampus of the mice. The p...
Source: Neurochemical Research - Category: Neuroscience Authors: Source Type: research