Controlling Through-Slice Chemical-Shift Artifacts for Improved Non-Fat-Suppressed Musculoskeletal Turbo-Spin-Echo Magnetic Resonance Imaging at 7 T

The objective of this work was to explore and reduce through-slice chemical shift artifacts in 2-dimensional (2D) TSE imaging at 7 T. Materials and Methods This prospective study was approved by the local ethics board. The bandwidths of the excitation and refocusing radiofrequency (RF) pulses of a prototype 2D TSE sequence were individually modified and their effect on the slice profiles and relative slice locations of water and fat spins was assessed in an oil-water phantom. Based on these results, it was hypothesized that the combination of matched and increased excitation and refocusing RF pulse bandwidths (“MIB”) of 1500 Hz would enable 2D TSE imaging with significantly reduced chemical shift artifacts compared with a state-of-the-art sequence with unmatched and moderate RF pulse bandwidths (“UMB”) of 1095 and 682 Hz. A series of T1-weighted sagittal knee examinations in 10 healthy human subjects were acquired using the MIB and UMB sequences and independently evaluated by 2 radiologists. They measured the width of chemical shift artifacts at 2 standardized locations and graded the perceived negative effect of chemical shift artifacts on image quality in the bones and in the whole gastrocnemius muscle on a 5-point scale. Similar knee, wrist, and foot images were acquired in a single subject. Signal-to-noise ratios in the femoral bone marrow were computed between the UMB and MIB sequences. Results Phantom measurements confirmed the expected spatial ...
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research