Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid

In this study, we first established a controllable and stable caffeic acid pathway by employing a modified GAL regulatory system to control the genome-integrated pathway genes in S. cerevisiae and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites. KEY POINTS: Genomic integration of ORgTAL, OHpaB, and HpaC for caffeic acid production in yeast. Feedback inhibition elimination and Aro10 deletion improved caffeic acid production. The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.PMID:34283270 | DOI:10.1007/s00253-021-11445-1
Source: Applied Microbiology and Biotechnology - Category: Microbiology Authors: Source Type: research