Whole-Exome Sequencing Identifies a Novel < em > TRPM4 < /em > Mutation in a Chinese Family with Atrioventricular Block

Biomed Res Int. 2021 Apr 17;2021:9247541. doi: 10.1155/2021/9247541. eCollection 2021.ABSTRACTAtrioventricular block (AVB) is a leading cause of sudden cardiac death, and most of AVB cases are presented as autosomal dominant. The electrocardiogram of AVB patients presents an abnormal progressive cardiac conduction disorder between atria and ventricles. Transient receptor potential melastatin 4 (TRPM4) is a nonselective Ca2+-activated cation channel gene defined as a novel disease-causing gene of AVB. So far, 47 mutations of TRPM4 have been recorded in Human Gene Mutation Database. The aim of this study was to explore the relationship between TRPM4 mutation and pathogenesis of AVB. We investigated a Chinese family with AVB by whole-exome sequencing. An arrhythmia-related gene filtering strategy was used to analyze the disease-causing mutations. Three different bioinformatics programs were used to predict the effects of the mutation result. A novel mutation of TRPM4 was identified (c.2455C>T/p.R819C) and cosegregated in the affected family members. The three bioinformatics programs predicted that the novel mutation may lead to damage. Our study will contribute to expand the spectrum of TRPM4 mutations and supply accurate genetic testing information for further research and the clinical therapy of AVB.PMID:33959666 | PMC:PMC8075657 | DOI:10.1155/2021/9247541
Source: Biomed Res - Category: Research Authors: Source Type: research