Gate-controlled BCS-BEC crossover in a two-dimensional superconductor

We report crossover behavior from the BCS limit to the BEC limit realized by varying carrier density in a two-dimensional superconductor, electron-doped zirconium nitride chloride. The phase diagram, established by simultaneous measurements of resistivity and tunneling spectra under ionic gating, demonstrates a pseudogap phase in the low-doping regime. The ratio of the superconducting transition temperature and Fermi temperature in the low–carrier density limit is consistent with the theoretical upper bound expected in the BCS-BEC crossover regime. These results indicate that the gate-doped semiconductor provides an ideal platform for the two-dimensional BCS-BEC crossover without added complexities present in other solid-state systems.
Source: ScienceNOW - Category: Science Authors: Tags: Materials Science, Physics reports Source Type: news