Photoprotective activity of zirconia nanoparticles

Colloids Surf B Biointerfaces. 2021 Feb 18;202:111636. doi: 10.1016/j.colsurfb.2021.111636. Online ahead of print.ABSTRACTThe increasing incidence of diseases caused by the harmful effects of UV radiation in skin, predominantly skin cancer, induce the search for more efficient photoprotector agents. Nowadays, titanium dioxide (TiO2) and zinc oxide (ZnO) are the most widely used photoprotectors and therefore form the main components of commercially available sunscreens. Although the outstanding efficiency in absorbing and scattering UV radiation, mainly as nanoparticles, recent studies have raised concerns regarding the safe use of these nanoparticles, especially due to their high generation of reactive oxygen species (ROS). Thereby, this work focus on the evaluation of the photoprotective activity of zirconia nanoparticles (ZrO2 NPs) and their cytotoxicity study in the presence and absence of UV irradiation. The ZrO2 NPs were synthesized by hydrothermal method and their hydrodynamic diameter, Zeta potential and colloidal stability were characterized by dynamic light scattering. The morphology and size were observed by transmission electron microscopy. The synthesis resulted in ZrO2 NPs with 50 nm of diameter and 56 nm of hydrodynamic diameter. The high colloidal stability was evidenced by the high value of Zeta potential (+48 mV) and low polydispersity index (0.09). The UV-vis spectrum of the ZrO2 NPs in aqueous suspension showed an intense light scattering below 250 and a wi...
Source: Colloids and Surfaces - Category: Biotechnology Authors: Source Type: research