Neuroprotective roles of HAX-1 in ischemic neuronal injury.

In this study, the expression and roles of HAX-1 after ischemic stress were investigated using in vivo and in vitro models. The effect of oxidative stress on the regulation of HAX-1 was examined using knockout mice lacking nicotinamide-adenine dinucleotide phosphate oxidase 2 (NOX2), which is a major source of reactive oxygen species (ROS) after cerebral ischemia. Male C57BL/6 J mice were subjected to transient forebrain ischemia induced by 22-min occlusion of the bilateral common carotid arteries, and striatum samples were analyzed. For in vitro ischemic experiments, oxygen and glucose deprivation (OGD) in a rat pheochromocytoma cell line was utilized. Western blotting and immunofluorescence analysis revealed HAX-1 expression in neuronal mitochondria, which was significantly decreased after ischemia in vivo and in vitro. In NOX2 knockout mice, ischemia-induced decrease in HAX-1 expression and ischemic neuronal injury was significantly alleviated compared to those in wild-type mice. Inhibition of HAX-1 using small interfering RNA significantly increased injury in cultured cells after OGD. These findings suggest that HAX-1 has a neuroprotective effect against ischemic neuronal injury, and downregulation of HAX-1 by NOX2-produced ROS induces apoptosis after cerebral ischemia. PMID: 33600816 [PubMed - as supplied by publisher]
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research