In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation

The interface between metal catalyst and support plays a critical role in heterogeneous catalysis. An epitaxial interface is generally considered to be rigid, and tuning its intrinsic microstructure with atomic precision during catalytic reactions is challenging. Using aberration-corrected environmental transmission electron microscopy, we studied the interface between gold (Au) and a titanium dioxide (TiO2) support. Direct atomic-scale observations showed an unexpected dependence of the atomic structure of the Au-TiO2 interface with the epitaxial rotation of gold nanoparticles on a TiO2 surface during carbon monoxide (CO) oxidation. Taking advantage of the reversible and controllable rotation, we achieved in situ manipulation of the active Au-TiO2 interface by changing gas and temperature. This result suggests that real-time design of the catalytic interface in operating conditions may be possible.
Source: ScienceNOW - Category: Science Authors: Tags: Chemistry reports Source Type: news