Wing geometry and genetic analyses reveal contrasting spatial structures between male and female Aedes aegypti (L.) (Diptera: Culicidae) populations in metropolitan Manila, Philippines.

Wing geometry and genetic analyses reveal contrasting spatial structures between male and female Aedes aegypti (L.) (Diptera: Culicidae) populations in metropolitan Manila, Philippines. Infect Genet Evol. 2020 Dec 12;:104676 Authors: Carvajal TM, Amalin DM, Watanabe K Abstract The population genetic structure of Aedes aegypti (Linnaeus, 1762) has been studied in order to understand its role as an efficient vector. Several studies utilized an integrative approach; to combine genetic and phenotypic data to determine its population structure but these studies have only focused on female populations. To address this particular gap, our study compared the population variability and structuring between its male and female populations using phenotypic and genetic data from a highly-urbanized and dengue-endemic region of the Philippines, Metropolitan Manila. Five mosquito populations comprised of female (n = 137) and male (n = 49) adult mosquitoes were used in this study. All mosquito individuals underwent geometric morphometric (26 landmarks), and genetic (11 microsatellite loci) analyses. Results revealed that FST estimates (genetic) were 0.055 and 0.009 while QST estimates (phenotypic) were 0.318 and 0.309 in in male and female populations, respectively. Wing shape variation plots showed that male populations were distinctly separated from each other while female populations overlapped. Similarly, discriminant analysis of principa...
Source: Infection, Genetics and Evolution - Category: Genetics & Stem Cells Authors: Tags: Infect Genet Evol Source Type: research