Effects of the GluN2B antagonist, Ro 25-6981, on extinction consolidation following adolescent- or adult-onset methamphetamine self-administration in male and female rats

Previous work suggests adolescent rats have deficient extinction consolidation relative to adults. Although the mechanisms underlying this age difference are currently unknown, studies in adult rats have implicated GluN2B-containing N-methyl-d-aspartate (NMDA) receptor function in extinction consolidation of drug-associated memory. Importantly, GluN2B neurotransmission emerges during adolescent development, and drugs of abuse during adolescence may delay the development of extinction consolidation by disrupting the ontogeny of GluN2B function. Here, we trained Sprague–Dawley rats of both sexes to self-administer methamphetamine [METH, 0.1 mg/kg/infusion intravenous (i.v.)] beginning during adolescence [postnatal (P) day 41] or adulthood (P91). Rats were given short access (2 h) to self-administer METH in seven daily sessions followed by 14 sessions with long access (6 h). Subsequently, rats underwent four daily 30-minute extinction sessions with immediate postsession injections of either a GluN2B antagonist [Ro25–6981; 6 mg/kg, intraperitoneal (i.p.)] or a vehicle solution. After four daily 2-h extinction sessions, a priming injection (1 mg/kg METH, i.p.) was given prior to a final 2-h reinstatement session. During LgA, adolescent-onset rats earn more METH than adult-onset rats and display greater drug-loading behavior. Rats reduced their drug-seeking behavior across the extinction sessions, with no significant group differences. Rats reinstated drug-seeking following the...
Source: Behavioural Pharmacology - Category: Drugs & Pharmacology Tags: Research Reports Source Type: research