Impact of rural residential coal combustion on air pollution in Shandong, China.

This study therefore investigated the impacts of RRCC on air pollution based on detailed household heating data obtained from intensive face-to-face interviews in Shandong province, China. The total contributions and specific contributions of coal, stoves, and coal-stove combinations to air pollution were simulated using the WRF-CAMx-PSAT model. The RRCC for heating had a considerable impact on air pollution, contributing 36.1, 9.1, and 16.1% of atmospheric SO2, NOx, and PM2.5 in winter, respectively. Different coal-stove combinations had different impacts on air pollution and mitigation efficiencies. The combination of bituminous coal and advanced coal stoves was the dominant contributor to air pollution, comprising 60.3-68.8% of the total RRCC contribution to different air pollutants. Sensitivity analyses indicated that bituminous coal burnt in a traditional stove had the highest mitigation efficiency (0.67 μg·m-3/10 kt) for atmospheric PM2.5 pollution, 4.1 times higher than that of anthracite briquette coal burnt in advanced coal stoves. Moreover, although RRCC is a near-surface emission source, it contributed considerably to regional pollution. Non-local RRCC emissions accounted for 21.8-74.6, 15.5-72.3, and 35.3-79.9% of the total contribution to SO2, NOx, and PM2.5 in different cities, respectively. The findings of this study improve understanding on the environmental impacts of rural emissions and can provide scientific support for the formulation of effective air ...
Source: Chemosphere - Category: Chemistry Authors: Tags: Chemosphere Source Type: research