Whole-genome sequencing analysis and CRISPR genotyping of rare antibiotic-resistant Salmonella enterica serovars isolated from food and related sources.

Whole-genome sequencing analysis and CRISPR genotyping of rare antibiotic-resistant Salmonella enterica serovars isolated from food and related sources. Food Microbiol. 2021 Feb;93:103601 Authors: Monte DFM, Nethery MA, Barrangou R, Landgraf M, Fedorka-Cray PJ Abstract For decades, Salmonella Typhimurium and Salmonella Enteritidis have prevailed in several countries as agents of salmonellosis outbreaks. In Brazil, the largest exporter of poultry meat, relatively little attention has been paid to infrequent serovars. Here, we report the emergence and characterization of rare serovars isolated from food and related sources collected between 2014 and 2016 in Brazil. Twenty-two Salmonella enterica isolates were analyzed through the use of whole-genome sequencing (WGS) and clustered regularly interspaced short palindromic repeats (CRISPR) genotyping. These isolates were classified into 10 infrequent serovars, including S. Abony, S. Isangi, S. Rochdale, S. Saphra, S. Orion, S. Ouakam, S. Grumpensis, S. Carrau, S. Abaetetuba, and S. Idikan. The presence of six antimicrobial resistance (AMR) genes, qnrB19, blaCMY-2, tetA, aac(6')-Iaa, sul2 and fosA7, which encode resistance to quinolones, third-generation cephalosporin, tetracycline, aminoglycoside, sulfonamide and fosfomycin, respectively, were confirmed by WGS. All S. Isangi harbored qnrB19 with conserved genomic context across strains, while S. Abony harbored blaCMY-2. Twelve (54.5%) stra...
Source: Food Microbiology - Category: Food Science Authors: Tags: Food Microbiol Source Type: research