Preventive effect of dioscin against monosodium urate-mediated gouty arthritis through inhibiting inflammasome NLRP3 and TLR4/NF- κB signaling pathway activation: an in vivo and in vitro study

AbstractMonosodium urate (MSU)-mediated inflammation is closely related to gouty arthritis (GA). Dioscin, an active ingredient, has been reported to possess anti-inflammatory property. Nevertheless, the role of dioscin in GA and the underlying mechanism have not been fully understood. In the present study, we investigated the anti-inflammatory effect of dioscin on MSU-induced GA through in vivo and in vitro experiments. Histopathological analysis showed that dioscin alleviated the severity of GA concomitant with the lowered uric acid and creatinine levels. Moreover, the increasing IL-1 β, IL-6, and TNF-α levels induced by MSU were decreased via administration of dioscin in mice and human synoviocytes. Western blotting results suggested that dioscin inhibited the activation of NLRP3 through down-regulating the protein expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved-caspase-1, as well as IL-1β. In addition, TLR4, myeloid differentiation primary response gene 88 (MyD88), p-IKKβ, p-p65, and NF-κB p65 in nuclei levels were significantly reduced by dioscin. Importantly, dioscin remarkably lowered the NF-κB p65-DNA activity in MSU-treated mice utilizing electrophoretic mobility shift assay (EMSA) analysis. Taken together, dioscin had a protective effect against MSU-initiated inflammatory response via repressing the production of inflammatory cytokines and the activation of inflammasome NLRP3 and TLR4/N F-κB ...
Source: Journal of Natural Medicines - Category: Drugs & Pharmacology Source Type: research