Prediction of a Cell-Class-Specific Mouse Mesoconnectome Using Gene Expression Data

AbstractReconstructing brain connectivity at sufficient resolution for computational models designed to study the biophysical mechanisms underlying cognitive processes is extremely challenging. For such a purpose, a mesoconnectome that includes laminar and cell-class specificity would be a major step forward. We analyzed the ability of gene expression patterns to predict cell-class and layer-specific projection patterns and assessed the functional annotations of the most predictive groups of genes. To achieve our goal we used publicly available volumetric gene expression and connectivity data and we trained computational models to learn and predict cell-class and layer-specific axonal projections using gene expression data. Predictions were done in two ways, namely predicting projection strengths using the expression of individual genes and using the co-expression of genes organized in spatial modules, as well as predicting binary forms of projection. For predicting the strength of projections, we found that ridge (L2-regularized) regression had the highest cross-validated accuracy with a medianr2 score of 0.54 which corresponded for binarized predictions to a median area under the ROC value of 0.89. Next, we identified 200 spatial gene modules using a dictionary learning and sparse coding approach. We found that these modules yielded predictions of comparable accuracy, with a medianr2 score of 0.51. Finally, a gene ontology enrichment analysis of the most predictive gene gro...
Source: Neuroinformatics - Category: Neuroscience Source Type: research