Altered proximal tubule fatty acid utilization, mitophagy, fission and supercomplexes arrangement in experimental Fanconi syndrome are ameliorated by sulforaphane-induced mitochondrial biogenesis.

Altered proximal tubule fatty acid utilization, mitophagy, fission and supercomplexes arrangement in experimental Fanconi syndrome are ameliorated by sulforaphane-induced mitochondrial biogenesis. Free Radic Biol Med. 2020 Apr 18;: Authors: Briones-Herrera A, Ramírez-Camacho I, Zazueta C, Tapia E, Pedraza-Chaverri J Abstract The kidney proximal tubule function relies on oxidative phosphorylation (OXPHOS), thus mitochondrial dysfunction is characteristic of acute kidney injury (AKI). Maleic acid (MA) can induce an experimental model of Fanconi syndrome that is associated to oxidative stress and decreased oxygen consumption. Sulforaphane (SF) is an antioxidant known to protect against MA-induced AKI. The molecular basis by which SF maintains the bioenergetics in MA-induced AKI is not fully understood. To achieve it, rats were submitted to a protective scheme: SF (1 mg/kg/day i.p.) for four days and, at the fourth day, they received a single dose of MA (400 mg/kg i.p.), getting four main experimental groups: (1) control (CT), (2) MA-nephropathy (MA), (3) SF-protected and (4) SF-control (SF). Additionally, a similar protective schema was tested in cultured NRK-52E cells with different concentrations of SF and MA. In the animal model, SF prevented the MA-induced alterations: decrease in fatty acid-related oxygen consumption rate, OXPHOS capacity, mitochondrial membrane potential (Ψmt), and the activity of complex I (CI) as its monom...
Source: Free Radical Biology and Medicine - Category: Biology Authors: Tags: Free Radic Biol Med Source Type: research