STAT3-driven hematopoiesis and lymphopoiesis abnormalities are dependent on serine phosphorylation.

STAT3-driven hematopoiesis and lymphopoiesis abnormalities are dependent on serine phosphorylation. Cytokine. 2020 Mar 19;130:155059 Authors: Balic JJ, White CL, Dawson R, Gough D, McCormack MP, Jenkins BJ Abstract Deregulated activation of the latent transcription factor STAT3 has been implicated in the pathogenesis of myeloproliferative and lymphoproliferative hematologic disorders. The uncontrolled activation of STAT3 has traditionally been assigned to its elevated phosphorylation at tyrosine 705 (pY705) and associated nuclear transcriptional activity. By contrast, a transcriptional role for serine 727 phosphorylation (pS727) of STAT3 has recently emerged, suggesting that pS727 may account for the pathological activity of STAT3 in certain disease settings. Here, by coupling pS727-STAT3-deficient Stat3SA/SA mice with a STAT3-driven mouse model (gp130F/F) for myeloproliferative and lymphoproliferative pathologies, we reveal a key role for pS727-STAT3 in promoting multiple hematologic pathologies. The genetic blockade of pS727-STAT3 in gp130F/F:Stat3SA/SA mice ameliorated the neutrophilia, thrombocytosis, splenomegaly and lymphadenopathy that are features of gp130F/F mice. The protection against thrombocytosis in gp130F/F:Stat3SA/SA mice coincided with normalized megakaryopoiesis in both bone marrow and spleen compartments. Interestingly, pS727-STAT3-mediated abnormal lymphopoiesis in gp130F/F mice was more pronounced in lymph nodes ...
Source: Cytokine - Category: Molecular Biology Authors: Tags: Cytokine Source Type: research