Epidermal Keratinocyte Depletion during Five Weeks of Radiotherapy is Associated with DNA Double-Strand Break Foci, Cell Growth Arrest and Apoptosis: Evidence of Increasing Radioresponsiveness and Lack of Repopulation; the Number of Melanocytes Remains Unchanged.

Epidermal Keratinocyte Depletion during Five Weeks of Radiotherapy is Associated with DNA Double-Strand Break Foci, Cell Growth Arrest and Apoptosis: Evidence of Increasing Radioresponsiveness and Lack of Repopulation; the Number of Melanocytes Remains Unchanged. Radiat Res. 2020 Mar 20;: Authors: Turesson I, Simonsson M, Hermansson I, Book M, Sigurdadottir S, Thunberg U, Qvarnström F, Johansson KA, Fessé P, Nyman J Abstract During fractionated radiotherapy, epithelial cell populations are thought to decrease initially, followed by accelerated repopulation to compensate cell loss. However, previous findings in skin with daily 1.1 Gy dose fractions indicate continued and increasing cell depletion. Here we investigated epidermal keratinocyte response with daily 2 Gy fractions as well as accelerated and hypofractionation. Epidermal interfollicular melanocytes were also assessed. Skin-punch biopsies were collected from breast cancer patients before, during and after mastectomy radiotherapy to the thoracic wall with daily 2 Gy fractions for 5 weeks. In addition, 2.4 Gy radiotherapy four times per week and 4 Gy fractions twice per week for 5 weeks, and two times 2 Gy daily for 2.5 weeks, were used. Basal keratinocyte density of the interfollicular epidermis was determined and immunostainings of keratinocytes for DNA double-strand break (DSB) foci, growth arrest, apoptosis and mitosis were quantified. In addition, interfollicular melanocy...
Source: Radiation Research - Category: Physics Authors: Tags: Radiat Res Source Type: research