Melatonin inhibits apoptosis in mouse Leydig cells via the retinoic acid-related orphan nuclear receptor α/p53 pathway

In this study, we investigated the mechanism through which melatonin inhibits apoptosis in mouse Leydig cells by activating the retinoic acid-related orphan nuclear receptor (ROR) α/p53 signaling pathway. We confirmed the expression and localization of RORα in mouse Leydig cells using immunofluorescence. After treatment with 10 ng/mL melatonin for 36 h, RORα mRNA and protein levels were significantly increased (P < 0.01). TUNEL and flow cytometry showed that melatonin significantly decreased the TUNEL-positive cell ratio and apoptosis rate (P < 0.05). Moreover, melatonin decreased BAX expression and increased BCL-2 expression (P < 0.05). However, the RORα inhibitor SR1001 reversed the inhibitory effects of melatonin on apoptosis (P < 0.05). Additionally, analysis of p53 expression showed that melatonin inhibited p53 mRNA and protein expression (P < 0.05), whereas SR1001 reversed these effects. p53 reversed the anti-apoptotic process involving RORα-mediated melatonin in mouse Leydig cells. Collectively, our findings suggested that melatonin inhibited apoptosis via the RORα/p53 pathway.Graphical abstract
Source: Life Sciences - Category: Biology Source Type: research
More News: Biology | Hormones | Melatonin | Study