Sustainable production of alkyl esters via thermal process in the presence of carbon black.

In this study, it is introduced a sustainable synthetic route of alkyl esters, considered value-added industrial chemicals and fuels, from volatile fatty acids (VFAs) that can potentially be generated from organic waste. In the presence of a porous carbon material, the thermally induced reaction could be conducted under an initial pressure of 1 atm. Even though the reaction was finished within <10 s, they gave a high yield of target products: the conversion of six VFAs into their corresponding methyl esters which can be further converted into gasoline alternatives with >90 wt% yields. The carbon black showed better performance for both reactions than other commercially available porous material such as silica. This work suggests that carbon is a good option of being used as a porous material for thermal esterification to produce renewable alternative chemicals from waste-derived feedstocks. PMID: 32028179 [PubMed - as supplied by publisher]
Source: Environmental Research - Category: Environmental Health Authors: Tags: Environ Res Source Type: research