Surface modified glass substrate for sensing E. coli using highly stable and luminescent CdSe/CdS core shell quantum dots

Publication date: Available online 20 January 2020Source: Journal of Photochemistry and Photobiology B: BiologyAuthor(s): Chandan Hunsur Ravikumar, R. Shwetharani, R. Geetha BalakrishnaAbstractCdSe/CdS core shelled quantum dots (QDs) were prepared by colloidal synthesis using a binary ligand system and a non-coordinating, reusable solvent n-octadecane (nOD). Both the synthesis of CdSe and CdSe/CdS core shelled quantum dots were achieved by hot injection technique at much lower temperatures than reported earlier. The use of binary ligand facilitated enough nucleation and growth. Red shift in absorption spectra, an enhanced crystallite and particle size is evidenced by XRD and TEM respectively, confirming the formation of core shell structure of CdSe/CdS. The synthesized core shells exhibited high fluorescence intensity, long term stability and good mono dispersion, making it a potential material for bio-imaging and sensing. Core shell QDs were modified with mercapto propionic acid (MPA) to impart aqueous solubility. Studies on cytotoxicity of shelled QDs reveal good bio compatibility with a very minimum toxicity of IC50 = 20 μg/L. These QDs were used for sensing E. coli. Ordinary glass slide, modified using plasma etching is surface modified through APTES aiding conjugation of antibodies. Anti- E. coli polyclonal antibody on glass matrix (slide) and antibody conjugated QDs were used for detection of E. coli in a typical sandwich model. The excellent optical transparency...
Source: Journal of Photochemistry and Photobiology B: Biology - Category: Speech-Language Pathology Source Type: research