Evidence that reduction in volume protects in situ articular chondrocytes from mechanical impact.

Evidence that reduction in volume protects in situ articular chondrocytes from mechanical impact. Connect Tissue Res. 2020 Jan 14;:1-15 Authors: Kotelsky A, Carrier JS, Aggouras A, Richards MS, Buckley MR Abstract Chondrocytes, the resident cells in articular cartilage, carry the burden of producing and maintaining the extracellular matrix (ECM). However, as these cells have a low proliferative capacity and are not readily replaced, chondrocyte death due to extreme forces may contribute to the pathogenesis of osteoarthritis (OA) after injury or may inhibit healing after osteochondral transplantation, a restorative procedure for damaged cartilage that requires a series of mechanical impacts to insert the graft. Consequently, there is a need to understand what factors influence the vulnerability of in situ chondrocytes to mechanical trauma. To this end, the objective of this study was to investigate how altering cell volume by different means (hydrostatic pressure, uniaxial load, and osmotic challenge with and without inhibition of regulatory volume decrease) affects the vulnerability of in situ chondrocytes to extreme mechanical forces. Using a custom experimental platform enabling testing of viable and intact murine cartilage-on-bone explants, we established a strong correlation between chondrocyte volume and vulnerability to impact injury wherein reduced volume was protective. Moreover, we found that the volume-perturbing interventi...
Source: Connective Tissue Research - Category: Research Tags: Connect Tissue Res Source Type: research