Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis.

Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. Environ Int. 2020 Jan 08;136:105457 Authors: Sun R, Li Y, Lin N, Ou C, Wang X, Zhang L, Jiang F Abstract A novel sulfidogenic acid mine drainage (AMD) treatment system with a sulfur reduction process was developed. During the 220-d operation, >99.9% of 380-mg/L ferric, 150-mg/L aluminum, 110-mg/L zinc, 20-mg/L copper and 2.5-mg/L lead ions, and 42.6-44.4% of 100-mg/L manganese ions in the synthetic AMD were step-by-step removed in the developed system with three pre-posed metal precipitators and a sulfur reduction reactor. Among them, zinc, copper and lead ions were removed by the biogenic hydrogen sulfide that produced through elemental sulfur reduction; while ferric, aluminum and manganese ions were removed by the alkali precipitation. Compared with the reported sulfate reduction reactors, the sulfur reduction reactor significantly reduced the chemical cost by 25.6-78.9% for sulfide production, and maintained a high sulfide production rate (1.12 g S2-/L-d). The pH level in the sulfidogenic reactor driven by sulfur-reducing bacteria posed a significant effect on the sulfide production rate. Under a nearly neutral condition (pH 7.0-7.5), elemental sulfur dissolved into polysulfide to increase the bioavailability of S0. At acidic conditions (pH < 6.0), polysulfid...
Source: Environment International - Category: Environmental Health Authors: Tags: Environ Int Source Type: research