Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect

In this study, by combining the excellent photothermal effect of graphene and antibacterial activity of AgNPs, we have applied reduced graphene oxide/silver (RGO/Ag) nanocomposite to destroy the MDR bacteria. The antibacterial activity of the RGO/Ag nanocomposite was systematically investigated using a regular bacterium of Escherichia coli (E. coli) and an MDR bacterium of Klebsiella pneumoniae (Kp). Compared with AgNPs, graphene oxide (GO) and RGO, the RGO/Ag nanocomposite showed significant higher antibacterial efficiency for both regular bacteria and MDR bacteria. Under a near-infrared (NIR) irradiation (0.30 W/cm2 for 10 min), the RGO/Ag nanocomposite demonstrated an enhanced synergetic antibacterial activity through the photothermal effect. Nearly 100 % of E. coli and Kp were killed by the treatment of 15 μg/mL and 30 μg/mL of RGO/Ag nanocomposite, respectively. Moreover, a membrane integrity assay and a reactive oxygen species (ROS) assay demonstrated that the RGO/Ag nanocomposite under NIR irradiation induced the cell membrane disruption and generation of ROS, providing possible mechanisms for their high antibacterial activity besides the photothermal effect. Finally, the cytotoxicity of the RGO/Ag nanocomposites toward different mammalian cells was studied, the cell viabilities retained above 60 % at higher concentrations of RGO/Ag, indicating that the RGO/Ag nanocomposites may be a low cytotoxic, efficient antibacterial agent with the irradiation.Graphical ...
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research