Simple Identification of Cerebrospinal Fluid Turbulent Motion Using a Dynamic Improved Motion-sensitized Driven-equilibrium Steady-state Free Precession Method Applied to Various Types of Cerebrospinal Fluid Motion Disturbance.

Simple Identification of Cerebrospinal Fluid Turbulent Motion Using a Dynamic Improved Motion-sensitized Driven-equilibrium Steady-state Free Precession Method Applied to Various Types of Cerebrospinal Fluid Motion Disturbance. Neurol Med Chir (Tokyo). 2019 Nov 27;: Authors: Atsumi H, Horie T, Kajihara N, Sunaga A, Sakakibara Y, Matsumae M Abstract The motion of cerebrospinal fluid (CSF) within the subarachnoid space and ventricles is greatly modulated when propagating synchronously with the cardiac pulse and respiratory cycle and path through the nerves, blood vessels, and arachnoid trabeculae. Water molecule movement that propagates between two spaces via a stoma, foramen, or duct presents increased acceleration when passing through a narrow area and can exhibit "turbulence." Recently, neurosurgeons have started to perform fenestration procedures using neuroendoscopy to treat hydrocephalus and cystic lesions. As part of the postoperative evaluation, a noninvasive diagnostic technique to visualize the water molecules at the fenestrated site is necessary. Because turbulence is observed at this fenestrated site, an imaging technique appropriate for observing this turbulence is essential. We therefore investigated the usefulness of a dynamic improved motion-sensitized driven-equilibrium steady-state free precession (Dynamic iMSDE SSFP) sequence of magnetic resonance imaging that is superior for ascertaining turbulent motions in healthy...
Source: Neurologia Medico-Chirurgica - Category: Neurosurgery Tags: Neurol Med Chir (Tokyo) Source Type: research