Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk.

Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal Chim Acta. 2020 Jan 06;1093:93-105 Authors: Madhuvilakku R, Alagar S, Mariappan R, Piraman S Abstract The detrimental effect of (NO2-) on environment, a sensitive and selective detection of nitrite (NO2-) ions with point-to-care device is need to be fabricated. Herein, we report the non-enzymatic nitrite sensor using a novel reduced graphene oxide/molybdenum disulfide/poly (3, 4-ethylene dioxythiophene) (rGO/MoS2/PEDOT) nanocomposite electrode. The rGO/MoS2/PEDOT nanocomposite was synthesized using facile and cost-effective hydrothermal and polymerization approaches. The characteristics of rGO-MoS2-PEDOT nanocomposite was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analyses. The rGO-MoS2-PEDOT nanocomposite modified glassy carbon electrode (GCE) was directly used for electrocatalytic detection of nitrite ions present in the solution. TEM images show the PEDOT nanoparticles with an average size of 100-120 nm are uniformly covered on the outer face of rGO-MoS2 nanosheets. The interaction between the PEDOT and rGO-MoS2 is evidenced in the FTIR, XRD and XPS studies, and they produced synergistic effect, r...
Source: Analytica Chimica Acta - Category: Chemistry Authors: Tags: Anal Chim Acta Source Type: research