Optimized artificial neural network based performance analysis of wheelchair movement for ALS patients

Publication date: Available online 9 November 2019Source: Artificial Intelligence in MedicineAuthor(s): Kai Li, S. Ramkumar, J. Thimmiaraja, S. DiwakaranAbstractIndividuals with neurodegenerative attacks loose the entire motor neuron movements. These conditions affect the individual actions like walking, speaking impairment and totally make the person in to locked in state (LIS). To overcome the miserable condition the person need rehabilitation devices through a Brain Computer Interfaces (BCI) to satisfy their needs. BMI using Electroencephalogram (EEG) receives the mental thoughts from brain and converts into control signals to activate the exterior communication appliances in the absence of biological channels. To design the BCI, we conduct our study with three normal male subjects, three normal female subjects and three ALS affected individuals from the age of 20 to 60 with three electrode systems for four tasks. One Dimensional Local Binary Patterns (LBP) technique was applied to reduce the digitally sampled features collected from nine subjects was treated with Grey wolf optimization Neural Network (GWONN) to classify the mentally composed words. Using these techniques, we compared the three types of subjects to identify the performances. The study proves that subjects from normal male categories performance was maximum compared with the other subjects. To assess the individual performance of the subject, we conducted the recognition accuracy test in offline mode. From ...
Source: Artificial Intelligence in Medicine - Category: Bioinformatics Source Type: research