MiR-125b-5p suppresses the bladder cancer progression via targeting HK2 and suppressing PI3K/AKT pathway

AbstractBladder cancer (BCa) is identified as the most common malignant solid cancer in the urogenital tract. Recently, dysregulation of miRNAs has received more attention because of its extensive role in the carcinogenesis of BCa. This research was designed to verify how miR-125b-5p be involved in BCa development. The expression of miR-125b-5p was detected in 52 pairs of BCa specimens and adjacent normal bladder specimens. The effects of miR-125b-5p on BCa viability, migration, and apoptosis in vitro were examined. We then examined directly target gene(s) of miR-125b-5p in BCa cells. Our data demonstrated that miR-125b-5p was decreased in BCa tissues and cell lines. Patients with low miR-125b-5p expression had obviously shorter 5-year survival time. Lower miR-125b-5p expression was significant correlated with distant metastasis, tumor size and lymph node metastasis. Ectopic expression of miR-125b-5p inhibited the BCa cell viability and migration and induced cell apoptosis. Furthermore, HK2 was confirmed regulated by miR-125b-5p. HK2 recovered miR-125b-5p-mediated suppression of BCa cell viability and migration. In addition, miR-125b-5p also exhibited suppressive effect on PI3K/AKT pathway. Overall, these data indicate that miR-125b-5p played a role in the suppressive effect on BCa by targeting HK2 through suppressing PI3K/AKT pathway and offer a potential therapeutic target for BCa.
Source: Human Cell - Category: Cytology Source Type: research