UV increases skin-derived 1α,25-dihydroxyvitamin D3 production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synthesis from 7-dehydrocholesterol

Publication date: Available online 27 August 2019Source: The Journal of Steroid Biochemistry and Molecular BiologyAuthor(s): Mi Hee Shin, Yuri Lee, Min-Kyoung Kim, Dong Hun Lee, Jin Ho ChungAbstractThe skin is a unique site in the human body that has the capacity to synthesize the active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), from 7-dehydrocholesterol (7DHC) upon UV irradiation. Keratinocytes express both 25-hydroxylase (CYP27A1 and CYP2R1) and 1α-hydroxylase (CYP27B1), critical enzymes involved in active vitamin D synthesis. Here, we investigated the effect of skin-derived 1α,25(OH)2D3, synthesized purely within the keratinocytes, on MMP-1 expression. Treatment of human epidermal keratinocytes with 1α,25(OH)2D3, but not 7DHC or 25OHD3, significantly increased MMP-1 expression. UV irradiation increases 1α,25(OH)2D3 levels, and ketoconazole inhibits UV-induced production of 1α,25(OH)2D3. Upregulation of MMP-1 by UV was reversed by inhibition of 1α,25(OH)2D3 synthesis using ketoconazole or CYP27B1 siRNA. In keratinocytes, 7DHC is a substrate for both cholesterol and 1α,25(OH)2D3 synthesis. We demonstrated that UV irradiation leads to decreased expression of DHCR7 (7-dehydrocholesterol reductase), the enzyme that converts 7DHC to cholesterol. Inhibition of DHCR7 with its inhibitor BM15766 decreased cholesterol synthesis and increased UV-induced MMP-1 expression, which was attenuated by ketoconazole. These findings suggest that UV-induced reduction ...
Source: The Journal of Steroid Biochemistry and Molecular Biology - Category: Biochemistry Source Type: research