Transparent cellulose nanofiber based open cell culture platform using matrix-assisted 3D printing

Publication date: Available online 25 August 2019Source: Carbohydrate PolymersAuthor(s): Sungchul Shin, Hojung Kwak, Jinho HyunAbstractCarboxymethylated hydrophilic CNF (Hphil-CNF) was modified with methyltrimethoxysilane into hydrophobic CNF (Hphob-CNF) and used as a printing matrix. The Hphil-CNF hydrogel was printed at the surface of the Hphob-CNF hydrogel, forming an immiscible, distinct 3D structure. Fabrication of channel systems in the CNF platform was performed by matrix-assisted 3D printing of petroleum jelly ink in the Hphil-CNF-patterned Hphob-CNF hydrogel. After the dehydration process followed by removal of the ink from the CNF film, the CNF hydrogels became a dense platform embedding fluidic channels. The CNF platform exhibited selective diffusion of fluorescein isothiocyanate-dextran from the channels in the Hphil-CNF patterns, indicating transport of bioactive molecules to cells cultured at the platform surface. The applicability of the open cell culture platform was investigated with A549 lung cancer cells by injecting cisplatin, a model drug into the channel.
Source: Carbohydrate Polymers - Category: Biomedical Science Source Type: research