Efficient vapor-liquid-solid synthesis of copper doped zinc oxide (Cu:ZnO) nanonails with highly homogeneous dopant distribution

Publication date: October 2019Source: Materials Science in Semiconductor Processing, Volume 101Author(s): Ozlem Altintas YildirimAbstractCopper doped zinc oxide (Cu:ZnO) nanonails with uniformly distributed Cu ions through the nail structure were synthesized via a vapor-liquid-solid technique using seed Cu:ZnO nanoparticles. The seed nanoparticles were prepared with a simple precipitation method. The structure and morphology of nanonails and the distribution of Cu ions were investigated using X-ray diffraction, electron energy loss spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and elemental mapping analysis. The defect states in the Cu:ZnO nanonails were characterized by room temperature photoluminescence (PL) spectra. The obtained Cu:ZnO nanonails have single phase wurtzite structure of ZnO and incorporated copper ions are in the Cu2+ oxidation state. SEM and TEM micrographs revealed that nanostructures with well-defined nail morphology composed of a hexagonal cap (~350 nm in diameter) and a prismatic shaft (~550 nm in diameter) connected with cylindrical neck (~250 nm in diameter). Both SEM and TEM elemental mapping analysis proved that the usage of Cu:ZnO seed nanoparticles resulted in highly homogeneous distribution of Cu ions into ZnO nanonails. High crystallinity of the Cu:ZnO nanonails was revealed with PL spectra composed of predominant second order diffraction peak and near band edge of UV emission peak and also weak d...
Source: Materials Science in Semiconductor Processing - Category: Materials Science Source Type: research