Sonochemical synthesis of perovskite-type barium titanate nanoparticles decorated on reduced graphene oxide nanosheets as an effective electrode material for the rapid determination of ractopamine in meat samples.

Sonochemical synthesis of perovskite-type barium titanate nanoparticles decorated on reduced graphene oxide nanosheets as an effective electrode material for the rapid determination of ractopamine in meat samples. Ultrason Sonochem. 2019 Sep;56:318-326 Authors: Muthumariyappan A, Rajaji U, Chen SM, Baskaran N, Chen TW, Jothi Ramalingam R Abstract A simple and facile ultrasound based sonochemical method to incorporate Perovskite-type barium titanate (BaTiO3) nanoparticles inside the layered and reduced graphene oxide sheets (rGOs) is reported. BaTiO3@rGOs nanocomposite was characterized by FESEM, HRTEM, EDX, mapping, XRD, XPS and EIS. The results show that the decoration and also incorporation of BaTiO3 nanoparticles in the multi-layered and ultrasound reduced graphene oxide matrix. Non-enzymatic and differential pulse voltammetric sensor of ractopamine (food toxic) based on the BaTiO3@rGOs nanocomposite modified screen printed carbon electrode is developed. Compared with the original BaTiO3/SPCE and rGOs/SPCE, the BaTiO3@rGOs/SPCE displays excellent current response towards ractopamine and gives linearity in the range of 0.01-527.19 µM ractopamine in neutral phosphate buffer (pH 7.0). The BaTiO3@rGOs nanocomposite modified sensor also exhibits valuable ability of anti-interference to electroactive analytes. Furthermore, the as-prepared BaTiO3 NPs@rGOs/SPCE has been applied to the determination of ractopamine in pork and chicken sa...
Source: Ultrasonics Sonochemistry - Category: Chemistry Authors: Tags: Ultrason Sonochem Source Type: research