Predicting herbicide movement across semi-permeable membranes using three phase partitioning

Publication date: Available online 17 May 2019Source: Pesticide Biochemistry and PhysiologyAuthor(s): Hudson K. Takano, Eric L. Patterson, Scott J. Nissen, Franck E. Dayan, Todd A. GainesAbstractHerbicide efficacy depends on herbicides crossing cell and organelle membranes. We evaluated an artificial membrane system to understand how herbicides cross biological membranes. This understanding aids in predicting herbicide behavior in planta and, consequently, efficacy, mode of action, and whether active transporter-based herbicide resistance mechanisms may be possible. Five herbicides with different log Kow and pKa values were assessed: glyphosate, 2,4-D, clopyralid, sulfentrazone and glufosinate. The artificial membrane apparatus included four semipermeable membranes containing buffers with pH 2.7, 5 and/or 7.4, floating in a bath of diethyl ether. These conditions were based on the pH from different cellular compartments and the pKa for these herbicides. Changes in herbicide concentration due to movement were measured using radioactivity or liquid chromatography mass spectrometry. In general, herbicide behavior followed the pattern predicted by their calculated pKa and log Kow. Herbicides added to an acidic phase (pH 2.7) were more mobile than when they were added to the more basic phase (pH 7.4), except when herbicide's pKa was lower than the pH of the starting phase. Clopyralid, 2,4-D, and sulfentrazone showed significant acid trapping behavior due to their weak acid f...
Source: Pesticide Biochemistry and Physiology - Category: Biochemistry Source Type: research