Effective stabilization and distribution of emulsified nanoscale zero-valent iron by xanthan for enhanced nitrobenzene removal.

Effective stabilization and distribution of emulsified nanoscale zero-valent iron by xanthan for enhanced nitrobenzene removal. Chemosphere. 2019 May;223:375-382 Authors: Zhang M, Dong Y, Gao S, Cai P, Dong J Abstract The reactivity and delivery of remediants and treatment of organic contaminants in heterogeneous aquifer are particularly challenging issues for injection-based remedial treatments. Our objective was to enhance the reactivity and delivery of nanoscale zero-valent iron (nZVI) and improve the sweeping efficiency of nZVI into low permeable zones (LPZs) to reduce nitrobenzene (NB). This was accomplished by conducting batch and transport experiments that quantified NB degradation by different modified nZVI and the ability of emulsified nZVI (EZVI) or xanthan carried EZVI (XG-EZVI) to penetrate and cover a lens. By incorporating the xanthan and emulsified oil with nZVI, it possessed higher stability and stronger reactivity to reduce NB. Results showed that the stability of EZVI was improved by xanthan, and there were no adverse effects on NB removal in use of XG-EZVI at limited xanthan addition of ≦100 mg L-1. By the injection of XG-EZVI in 2D-tank experiments, the degradation of NB was 8 times that of EZVI added, while NB adsorption on media was only 1/50 of initial NB. 1205 mg of NB totally entered into the tank, the quality of aniline in effluent was approximately 90.0 mg in addition of XG-EZVI at 40 h, but not...
Source: Chemosphere - Category: Chemistry Authors: Tags: Chemosphere Source Type: research