In vitro evaluation of biodegradable nHAP-Chitosan-Gelatin-based scaffold for tissue engineering application

The present study focuses on fabrication and characterisation of porous composite scaffold containing hydroxyapatite (HAP), chitosan, and gelatin with an average pore size of 250–1010 nm for improving wound repair and regeneration by Electrospinning method. From the results of X-Ray Diffraction (XRD) study, the peaks correspond to crystallographic structure of HAP powder. The presence of functional group bonds of HAP powder, Chitosan and scaffold was studied using Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology of the scaffold was observed using Scanning Electron Microscope (SEM). The Bioactivity of the Nano composite scaffolds was studied using simulated body fluid solution at 37 ± 1°C. The biodegradability test was studied using Tris-Buffer solution for the prepared nanocomposites [nano Chitosan, nano Chitosan gelatin, Nano based Hydroxyapatite Chitosan gelatin]. The cell migration and potential biocompatibility of nHAP-chitosan-gelatin scaffold was assessed via wound scratch assay and were compared to povedeen as control. Cytocompatibility evaluation for Vero Cells using wound scratch assay showed that the fabricated porous nanocomposite scaffold possess higher cell proliferation and growth than that of povedeen. Thus, the study showed that the developed nanocomposite scaffolds are potential candidates for regenerating damaged cell tissue in wound healing process.
Source: IET Nanobiotechnology - Category: Nanotechnology Source Type: research