Apelin-36 exerts the cytoprotective effect against MPP+-induced cytotoxicity in SH-SY5Y cells through PI3K/Akt/mTOR autophagy pathway

Publication date: Available online 21 March 2019Source: Life SciencesAuthor(s): Junge Zhu, Shanshan Dou, Yunlu Jiang, Bo Bai, Jing Chen, Chunmei Wang, Baohua ChengAbstractAimsParkinson's disease (PD) is a common neurodegenerative disease typically associated with the accumulation of α-synuclein. Autophagy impairment is thought to be involved in the dopaminergic neurodegeneration in PD. We investigate the effect of Apelin-36 on the activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B(Akt)/the mammalian target of rapamycin (mTOR) autophagy pathway in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells, which is involved in the cytoprotective effect of Apelin-36.Main methodsSH-SY5Y cells were treated with 1-Methyl-4-phenylpyridine (MPP+) with or without Apelin-36. The cell viability, apoptotic ratio, the form of autophagic vacuoles, the expression of tyrosine hydroxylase (TH), α-synuclein, phosphorylation of PI3K, AKT, mTOR, microtubule-associated protein 1 Light Chain 3 II/I (LC3II/I) and p62 were detected to investigate the neuroprotective effect of Apelin-36.Key findingsThe results indicate that Apelin-36 significantly improved the cell viability and decreased the apoptosis in MPP+-treated SH-SY5Y cells. The decreased expression of tyrosine hydroxylase (TH) induced by MPP+ was significantly increased by Apelin36 pretreatment. Moreover, Apelin36 significantly increased the autophagic vacuoles. The ratio of LC3II/I was significantly increased by Apelin36, as w...
Source: Life Sciences - Category: Biology Source Type: research
More News: Biology | Brain | Insulin | Neurology