Melatonin loaded with bacterial cellulose nanofiber by Pickering-emulsion solvent evaporation for enhanced dissolution and bioavailability

The objective of the present work aimed to explore the potential of bacterial cellulose (BC) for oral delivery of melatonin (MLT), a natural hormone that faces problems of low solubility and oral bioavailability. BC was hydrolyzed by sulfuric acid followed by the oxidation to prepare bacterial cellulose nanofiber suspension (BCNs). Melatonin-loaded bacterial cellulose nanofiber suspension (MLT-BCNs) was prepared by emulsion solvent evaporation method. The properties of freeze-dried BCs and MLT-BCNs were studied by Fluorescence microscopy (FM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), X–ray diffraction (XRD), differential scanning calorimetry (DSC) and thermo gravimetric (TG). The results indicated that the fibers in BCNs became short and thin compared with BC, MLT in MLT-BCNs was uniformly distributed, both BCNs and MLT-BCNs have good thermodynamic stability. The MLT-BCNs showed more rapid dissolution MLT rates compared to the commercially available MLT in SGF and SIF, the dissolution of the cumulative release rate was about 2.1 times of the commercially available MLT. The oral bioavailability of MLT-BCNs in rat was about 2.4 times higher than the commercially available MLT. Thus, MLT-BCNs could act as promising delivery with enhanced dissolution and bioavailability for MLT after oral administration.Graphical abstract
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research