Upregulation of Slit Improves Functional Recovery After Stroke in Mice

Researchers here report on a mechanism that increase the regenerative capacity of brain cells following the damage of a stroke, at least in mice. There are now a few similar approaches demonstrated in the laboratory, but it remains to be seen whether any of them will lead to therapies in the near future. It is certainly the case that mammalian cells do not respond to structural damage and loss of blood supply in the most optimal way; many of their reactions make matters worse, not better. Perhaps that can be adjusted safely and soon, though it would be far preferable to focus on potential ways to prevent that sort of event from occurring at all, such as better maintenance of blood vessels, control of atherosclerosis, and the like. Stroke is a leading cause of death and chronic disability in adults, causing a heavy social and economic burden worldwide. However, no treatments exist to restore the neuronal circuitry after a stroke. The mammalian brain has only a limited ability to regenerate neuronal circuits for functional recovery. While most neurons are generated during embryonic brain development, new neurons continue to be produced in the ventricular-subventricular zone (V-SVZ) of the adult brain. In a rodent ischemic stroke model induced by transiently blocking the middle cerebral artery, the most commonly affected vessel in human patients, some V-SVZ-derived neuroblasts migrate toward the lesion, where they mature and become integrated into the neuronal ci...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs