Transdermal Patches Loaded with L-Cysteine HCL as a Strategy for Protection from Mobile Phone Emitting Electromagnetic Radiation Hazards

Publication date: Available online 5 September 2018Source: Saudi Pharmaceutical JournalAuthor(s): Samia M. Omar, Mohamed Nasr, Diana A. RaflaAbstractMobile phone usage has been increased in the last few years emitting electromagnetic radiation (EMR), which disturbs normal cellular processes via oxidative stress. L-cysteine, a glutathione precursor, prevents oxidative damage. Transdermal patches (TDPs) loaded with L-cysteine hydrochloride (L-CyS-HCL) were fabricated by dispersion of L-CyS-HCL 5% w/w and different concentrations of sorbitol as a plasticizer in room-temperature vulcanizable synthetic silicone matrices (RTV-Si). The effect of sorbitol on patch physicochemical parameters was assessed; in-vitro L-CyS-HCL release profiles and ex-vivo permeation were studied. Pharmacokinetic parameters of endogenous synthetized in-vivo glutathione, after receiving IV bolus dose of L-CyS-HCl and L-CyS-HCl-RTV-Si-TDPs were studied in rat model. The influence of L-CyS-HCL-RTV-Si-TDPs against damaging effects of mobile phone EMR on rats' blood and brain tissues was studied. The results revealed that patch plasticity, intensity reflections, surface porosity, L-CyS-HCL release rate and skin permeation increased with increasing sorbitol concentration. Pharmacokinetic profile for IV dose and L-CyS-HCl-RTV-Si-TDPs revealed that the L-CyS-HCl-RTV-Si-TDPs provided a sustained glutathione plasma concentration–time profile over entire patch application. High significant differences in biologica...
Source: Saudi Pharmaceutical Journal - Category: Drugs & Pharmacology Source Type: research