Mitoxantrone-loaded chitosan/hyaluronate polyelectrolyte nanoparticles decorated with amphiphilic PEG derivates for long-circulating effect

Publication date: Available online 26 July 2018Source: Colloids and Surfaces B: BiointerfacesAuthor(s): Jiajia Wang, Sajid Asghar, Xin Jin, Zhipeng Chen, Lin Huang, Qineng Ping, Li Zong, Yanyu XiaoAbstractPoly (ethylene glycol) (PEG) and its derivatives are not only used to improve the stability of drug-loaded nanoparticles but also prolong their stay in blood for extended durations. We, hereby, report mitoxantrone loaded polyelectrolyte nanoparticles (MTO-PENPs) based on the hyaluronic acid (HA) and chitosan hydrochloride (HCS) complexed with amphiphilic PEG derivatives, carboxylated PEG (100) monostearate (PGMC, MTO-CPENPs) and D-tocopheryl PEG 1000 succinate (TPGS, MTO-TPENPs), to extend the in vivo circulation time. Maximum encapsulation efficiency (>95%) was observed at 40 mg/mL of PGMC or TPGS. TEM showed that PENPs preparations were spherical with an average diameter around 200 nm. Both MTO-CPENPs and MTO-TPENPs showed better stability than MTO-PENPs during storage at 4 °C, offered better control over the release of drug than simple PENPs, and showed pH-sensitivity with faster drug release in acidic conditions. MTO-CPENPs showed greater aversion from the protein adsorption and phagocytic uptake by macrophages but their cytotoxicity against the cancerous cells was poor of the all, and yet MTO-TPENPs showed good cytotoxicity against the MCF-7 cells. In the pharmacokinetic study, both MTO-CPENPs and MTO-TPENPs exhibited significant prolongation in blood circulation...
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research