Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpressing GabTD from Bacillus subtilis

In this study, as a solution to improve the production of glutaric acid, we introduced gabTD genes from B. subtilis to E. coli for a whole cell biocatalytic approach. This approach enabled us to determine the effect of co-factors on reaction and to achieve a high conversion yield from 5-aminovaleric acid at the optimized reaction condition. Optimization of whole cell reaction by different plasmids, pH, temperature, substrate concentration, and cofactor concentration achieved full conversion with 100 mM of 5-aminovaleric acid to glutaric acid. Nicotinamide adenine dinucleotide phosphate (NAD(P)+) and α-ketoglutaric acid were found to be critical factors in the enhancement of conversion in selected conditions. Whole cell reaction with a higher concentration of substrates gave 141 mM of glutaric acid from 300 mM 5-aminovaleric acid, 150 mM α-ketoglutaric acid, and 60 mM NAD+ at 30 °C, with a pH of 8.5 within 24 hours (47.1% and 94.2% of conversion based on 5-aminovaleric acid and α-ketoglutaric acid, respectively). The whole cell biocatalyst was recycled 5 times with the addition of substrates; this enabled the accumulation of extra glutaric acid.
Source: Enzyme and Microbial Technology - Category: Biotechnology Source Type: research