Cells Expressing Prominin-1 in Neonatal Murine Inferior Colliculus Differentiate into Neurons and Glia

AbstractInferior colliculus (IC) is a major center for the integration and processing of acoustic information from ascending auditory pathways. Damage to the IC as well as normal aging can impair auditory function. Novel strategies such as stem cell (SC)-based regenerative therapy are required for functional recovery because mature neural cells have a minimal regenerative capacity after an injury. However, it is not known if there are neural stem cells (NSCs) in the IC. Herein, we screened for NSCs by surface marker analysis using flow cytometry. Isolated IC cells expressing prominin-1 (CD133) exhibited the cardinal NSC properties self-renewal capacity, expression of known NSC markers (SOX2 and nestin), and multipotency. Prominin-1-expressing cells from neonatal IC generated neurospheres, and culture of these neurospheres in differentiation-conditioned medium gave rise to gamma-aminobutyric acid-ergic (GABAergic) neurons, astrocytes, and oligodendrocytes. The presence of NSC-like cells in the IC has important implications for understanding IC development and for potential regenerative therapy.
Source: Molecular Neurobiology - Category: Neurology Source Type: research