MicroRNA-150 restores endothelial cell function and attenuates vascular remodeling by targeting PTX3 through the NF- κB signaling pathway in mice with acute coronary syndrome.

MicroRNA-150 restores endothelial cell function and attenuates vascular remodeling by targeting PTX3 through the NF-κB signaling pathway in mice with acute coronary syndrome. Cell Biol Int. 2018 May 09;: Authors: Luo XY, Zhu XQ, Li Y, Wang XB, Yin W, Ge YS, Ji WM Abstract MicroRNAs have been known to function as important regulators in the vascular system, with various physiopathological effects such as vascular remodeling and hypertension modulation. We aimed to explore whether microRNA-150 (miR-150) regulates endothelial cell function and vascular remodeling in acute coronary syndrome (ACS), and the involvement of PTX3 and NF-κB signaling pathway. Ten normal mice and sixty ApoE-/- mice were chosen, and their coronary artery tissues and endothelial cells were extracted. ApoE-/- mice were injected with a series of inhibitors or mimics for miR-150, or siRNA against PTX3. The miR-150 expression, NF-κB1, RELA, and PTX3 mRNA expressions were assessed by reverse transcription quantitative polymerase chain reaction, and pentraxin-3, p-P50, and p-P65 protein expression by western blot analysis. Cell viability and migration were assessed by MTT assay and scratch test. Matrigel tube formation assay was employed to determine vascular remodeling of endothelial cells. The dual-luciferase reporter assay verified that PTX3 was a target of miR-150. Mice with ACS presented with decreased miR-150 but increased PTX3. It was observed that the miR-15...
Source: Cell Biology International - Category: Cytology Authors: Tags: Cell Biol Int Source Type: research