Bone marrow mesenchymal stem cells conditioned medium protects VSC4.1 cells against 2,5-hexanedione-induced autophagy via NGF-PI3K/Akt/mTOR signaling pathway.

Bone marrow mesenchymal stem cells conditioned medium protects VSC4.1 cells against 2,5-hexanedione-induced autophagy via NGF-PI3K/Akt/mTOR signaling pathway. Brain Res. 2018 Apr 26;: Authors: Zhang X, Kong Y, Sun Y, Qian Z, Gao C, Shi X, Li S, Piao Y, Piao F Abstract We aimed to investigate the effects of bone marrow mesenchymal stem cell conditioned medium (BMSC-CM) in preventing 2,5-hexanedione (HD)-induced damage to motoneurons, and examined the molecular mechanisms that mediate these effects. VSC4.1 cells were exposed to 25 mM HD for 24 h followed by incubation with DMEM for 24 h. HD-treated cells were incubated with BMSC-CM at varied concentrations. Incubation with BMSC-CM ameliorated the decreased cell viability and reduced LDH release from cells exposed to HD. BMSC-CM suppressed the elevated number of autophagic vacuoles, cells with LC3 puncta, increased LC3-II/LC3-I ratio, and decreased p62 caused by HD exposure. BMSC-CM elevated NGF and p-TrkA expressions in HD-treated cells. Administration of NGF inhibited autophagy, an effect that was similar to that observed after BMSC-CM treatment; this effect was abolished by the addition of NGF-neutralizing antibodies. BMSC-CM or NGF elevated p-protein kinase B (Akt) and p-mammalian target of rapamycin (mTOR) in HD-exposed cells, which was interrupted by TrkA inhibitor, K252a and mTOR inhibitor, rapamycin. BMSC-CM prevented HD-induced autophagic cell damage in VSC4.1 cells. The neurop...
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research