CAPTURE: Consistently Acquired Projections for Tuned and Robust EstimationA Self-Navigated Respiratory Motion Correction Approach

In this study, we present a fully automated and robust self-navigated approach to obtain 4-dimensional (4-D) motion-resolved images during free breathing. Materials and Methods The proposed method, Consistently Acquired Projections for Tuned and Robust Estimation (CAPTURE), is a variant of the stack-of-stars gradient-echo sequence. A 1-D navigator was consistently acquired at a fixed azimuthal angle for all stacks of spokes to reduce nonphysiological signal contamination due to system imperfections. The resulting projections were then “tuned” using complex phase rotation to adapt to scan-to-scan variations, followed by the detection of the respiratory curve. Four-dimensional motion-corrected and uncorrected images were then reconstructed via respiratory and temporal binning, respectively. This Health Insurance Portability and Accountability Act–compliant study was performed with Institutional Review Board approval. A phantom experiment was performed using a custom-made deformable motion phantom with an adjustable frequency and amplitude. For in vivo experiments, 10 healthy participants and 12 liver tumor patients provided informed consent and were imaged with the CAPTURE sequence. Two radiologists, blinded to which images were motion-corrected and which were not, independently reviewed the images and scored the image quality using a 5-point Likert scale. Results In the respiratory motion phantom experiment, CAPTURE reversed the effects of motion blurring and res...
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research