Mutant and wild-type p53 form complexes with p73 upon phosphorylation by the kinase JNK

The transcription factors p53 and p73 are critical to the induction of apoptotic cell death, particularly in response to cell stress that activates c-Jun N-terminal kinase (JNK). Mutations in the DNA-binding domain of p53, which are commonly seen in cancers, result in conformational changes that enable p53 to interact with and inhibit p73, thereby suppressing apoptosis. In contrast, wild-type p53 reportedly does not interact with p73. We found that JNK-mediated phosphorylation of Thr81 in the proline-rich domain (PRD) of p53 enabled wild-type p53, as well as mutant p53, to form a complex with p73. Structural algorithms predicted that phosphorylation of Thr81 exposes the DNA-binding domain in p53 to enable its binding to p73. The dimerization of wild-type p53 with p73 facilitated the expression of apoptotic target genes [such as those encoding p53–up-regulated modulator of apoptosis (PUMA) and Bcl-2-associated X protein (BAX)] and, subsequently, the induction of apoptosis in response to JNK activation by cell stress in various cells. Thus, JNK phosphorylation of mutant and wild-type p53 promotes the formation of a p53/p73 complex that determines cell fate: apoptosis in the context of wild-type p53 or cell survival in the context of the mutant. These findings refine our current understanding of both the mechanistic links between p53 and p73 and the functional role for Thr81 phosphorylation.
Source: Signal Transduction Knowledge Environment - Category: Science Authors: Tags: STKE Research Articles Source Type: news