MicroRNA-29b alleviates oxygen and glucose deprivation/reperfusion-induced injury via inhibition of the p53-dependent apoptosis pathway in N2a neuroblastoma cells.

MicroRNA-29b alleviates oxygen and glucose deprivation/reperfusion-induced injury via inhibition of the p53-dependent apoptosis pathway in N2a neuroblastoma cells. Exp Ther Med. 2018 Jan;15(1):67-74 Authors: Cao L, Zhang Y, Zhang S, Jiang TP, Chen L, Liu J, Zhou S Abstract Cerebral ischemic injury causes severe brain damage and remains one of the leading causes of morbidity and mortality worldwide. Members of the microRNA-29 (miR-29) family are involved in regulating the process of ischemia and may be developed as biomarkers to diagnose and treat cerebral ischemia. The role of miR-29b in cerebral ischemia injury remains poorly understood. The purpose of the present study was to investigate whether miR-29b overexpression suppressed cerebral ischemic injury and to explore its underlying mechanism of action. The results demonstrated that levels of miR-29b in N2a neuroblastoma cells decreased following oxygen and glucose deprivation/reperfusion (OGD/R) treatment. Transfection with miR-29b mimics significantly increased cell viability, decreased lactate dehydrogenase (LDH) leakage, inhibited apoptosis by decreasing morphological changes occurring in the nuclei and reduced caspase-3 activity in OGD/R-treated N2a cells. Conversely, miR-29b inhibitors enhanced OGD/R-induced cytotoxicity and apoptosis. In addition, the miR-29b mimics blocked the increase in Bax and p53 expression and decreased Bcl-2 expression in OGD/R-treated N2a cells, wher...
Source: Experimental and Therapeutic Medicine - Category: General Medicine Tags: Exp Ther Med Source Type: research