Chrysosplenetin, in the absence and presence of artemsininin, alters breast cancer resistance protein-mediated transport activity in Caco-2 cell monolayers using aristolochic acid I as a specific probe substrate

ABSTRACT The present study describes the impact of chrysosplenetin, in the absence and presence of artemisinin, on in vitro breast cancer resistance protein-mediated transport activity in Caco-2 cell monolayers using aristolochic acid I as a specific probe substrate. We observed that novobiocin, a known breast cancer resistance protein active inhibitor, increased Papp (AP-BL) of aristolochic acid I 3.13 fold (p< 0.05) but had no effect on Papp (BL-AP). Efflux ratio (PBA/PAB) declined 4.44 fold (p< 0.05). Novobiocin, consequently, showed a direct facilitation on the uptake of AAI instead of its excretion. Oppositely, both artemisinin and chrysosplenetin alone at dose of 10 µM significantly decreased Papp (BL-AP) instead of Papp (AP-BL). Chrysosplenetin alone attenuated the efflux ratio, which was suggestive of being as a potential breast cancer resistance protein suppressant. Oddly, Papp (BL-AP) as well as efflux ratio were respectively enhanced 2.52 and 2.58 fold (p< 0.05), when co-used with artemisinin and chrysosplenetin in ratio of 1:2. The potential reason remains unclear; it might be relative to binding sites competition between artemisinin and chrysosplenetin or the homodimer/oligomer formation of breast cancer resistance protein bridged by disulfide bonds, leading to an altered in vitro breast cancer resistance protein-mediated efflux transport function.
Source: Revista Brasileira de Farmacognosia - Category: Drugs & Pharmacology Source Type: research